SUSY Higgs Searches in the bbb Final State

Thomas Wright University of Michigan

SUSY 2011 – Fermilab September 1, 2011

On behalf of the CDF and Do Collaborations

The Higgs Boson

- Consider the Electromagnetic and the Weak Forces
- Coupling at low energy: EM: $\sim \alpha$, Weak: $\sim \alpha/(M_{W,Z})^2$
 - Coupling strength governed by the same dimensionless constant
 - Difference due to the mass of the W and Z bosons
 - Electroweak symmetry: $M_{\Upsilon}=M_{Z}=M_{W}$
 - But photons massless and W/Z are massive?
- May postulate the Higgs mechanism for the breaking of electroweak symmetry
 - Results in massive vector bosons and mass terms for the fermions
 - Theory predicts a massive new particle called the Higgs boson!

Supersymmetry

SM particles have supersymmetric partners: differ by 1/2 unit in spin SUSY has many attractive properties

- Cancellation of Higgs mass divergence, coupling unification, etc
- Lightest neutralino is a dark matter candidate

Requires larger Higgs sector than the single scalar of the SM

Simplest case: Minimal Supersymmetric Standard Model (MSSM)

Higgs in MSSM

- Instead of one scalar, get five:
 - Three neutral: h, H, A: (generically "φ")
 - Two charged: H⁺, H⁻
- Separate couplings for up-type and down-type fermions
- Properties of the Higgs sector largely determined by two parameters:
 - $-m_{\Delta}$: mass of pseudoscalar
 - tan β : ratio of down-type to up-type couplings
- Typically, $m_h < m_A < m_H$, and $m_{H\pm} \sim m_A$
- For $\tan \beta$ near 1, h is SM-like and light LEP-II limits apply
- Larger $\tan \beta$ shows more interesting behavior
 - A becomes degenerate with h or H (mass, couplings, etc)
 - Other decouples, SM-like, mass around 120 GeV
 - A + h/H production controlled by $tan\beta$
- In the Standard Model, Higgs cross section is fixed no free parameters
- In MSSM, production of A/h/H depends on $tan\beta$ range of possiblity
 - For the right value of $tan\beta$, could already have discovery potential

Higgs at High tanβ

Processes involving bottom quarks (down-type) enhanced by $tan^2\beta$

Boost from femtobarns to picobarns

Could be observable at Tevatron!

At large $tan\beta$, decays into $b\underline{b}$ (90%) and $\tau\tau$ (10%) dominate

The 3b channel

- Search for the bbφ→bbbb process
- Less cross section when requiring both b's to be high-p_T
- Look for the Higgs + 1b case

Signal: Three b-jets (two forming a mass peak from Higgs decay)

The Tevatron

The CDF and D0 detectors

Identifying b jets

3b Analysis Roadmap

Trigger	Based on two jets and two displaced tracks (no matching)	Multi-jet trigger with b-tagging.
Background	Derive estimates for each flavor combination from the data → Use Pythia to check for bias	Background shape modeled from a combination of data and Alpgen. → Rate obtained from fits to data
Discriminant	 Look for an excess in the mass of the two leading jets (m₁₂) Use tag mass (m_{tag}) information to understand flavor composition Perform a two-dimensional fit to the data using these estimates Tag mass information determines background composition Look for Higgs in m₁₂ distribution 	 Construct likelihood discriminant based on several angular and kinematic variables. Cut on to improve s/b and highest likelihood value used to select jet pair for m_{jj} Use low likelihood region as control region Look for Higgs in m_{jj}

T. Wright SUSY 9/1/2011 10

D0's Likelihood

Variables used to construct the likelihood:

- •the angle between the leading jet in the pair and the total momentum of the pair
- • $\Delta \eta$ and $\Delta \varphi$ between the two jets in the pair
- •the momentum balance in the pair
- the combined rapidity of the pair
- •the event sphericity

$$\mathcal{D}(x_1,....,x_6) = rac{\prod_{i=1}^6 P_i^{ ext{sig}}(x_i)}{\prod_{i=1}^6 P_i^{ ext{sig}}(x_i) + \prod_{i=1}^6 P_i^{ ext{bkg}}(x_i)},$$

Cut on D improves s/b and highest D value is used to select jet pair to use for m_{jj}.

CDF's use of mass (x_{tags})

- Split events by flavor
- Characteristic m₁₂ spectra
- Second variable to help separate backgrounds from each other, and Higgs+bbb from ones with c/q
- Important categories are:
 - bb + b : bbb, Higgs
 - bb + X : bbc, bbq
 - -bX+b:bcb,bqb
 - Naturally breaks into m₁+m₂ and m₃
- Pack into 1D so overall templates are only 2D (technical reasons)
- Unstack 3x3 histogram into a 9-bin
 1D histogram "x_{tags}"

CDF uses 2D fit (m₁₂ and x_{tags})

- The bbX events can be separated by third tag mass in x_{tags}
- Two lead jet tag masses separate bbB, bBb from bCb, bQb
- Separation out bbc and bbq by using m₃
- Templates are actually 2D histograms in both m₁₂ and x_{tags}
 - Fit itself is also 2D
 - Only show projections for clarity

Signal Shape

Combined detector acceptance and ID efficiency is about 1 % for both experiments.

The Data

SUSY 9/1/2011

- Generally good agreement between data and background models
- Quantify agreement and set limits using pseudoexperiments

Best Fit (backgrounds only)

100

150

250

200

750

250

500 E

0 50

T. Wright

15

Results

Max deviation from expected at 150 GeV/c² Including the trials factor, 1-CL_b = 2.5% (1.9 σ) Corresponds to σ x BR \sim 15 pb

Max deviation from expected at 120 GeV/ c^2 Including the trials factor about 2.0 σ

Analyses are similar and work is ongoing to combine!

Interpretation

- Previous limits for a resonance much narrower than the experimental resolution!
 - SM Higgs, new scalars, etc
- At tree level, $\sigma \times BR = 2\sigma_{SM} \tan^2 \beta \times 90\%$
- MSSM Higgs in high-tanβ scenarios not generally narrow
- Higgs properties are largely, but not completely, determined by m_A and tanβ
- Loop corrections introduce dependence on other SUSY parameters
 - M. Carena *et al.*, Eur.Phys.J. C45 (2006) 797-814 (hep-ph/0511023)

MSSM Constraints

High values of $tan\beta$ also excluded by di-tau analyses and recent LHC results.

Summary

- CDF updated MSSM Higgs results in the 3b channel
 - Submitted for publication in PRD (arXiv:1106:4782)
- D0 published 3b search in PLB with 5.2 fb⁻¹
 - → Effort to combine results in progress.
- No significant excess observed, but some excess evident in both experiments
- Analysis is adaptable to other signal models besides MSSM Higgs

For more information

http://arxiv.org/abs/1106.4782 (Submitted to PRD)

http://arxiv.org/abs/1011.1931

Phys.Lett.B698:97-104,2011

